
Chapter 10

Saving Time and Money:
Reusing Existing Code

In This Chapter
▶	Tweaking your code
▶	Adding new life to old code
▶	Making changes without spending a fortune

W
ouldn’t it be nice if every piece of software did just what you wanted
it to do? In an ideal world, you could simply buy a program, make it

work right away, plug it seamlessly into new situations, and update it easily
whenever your needs changed. Unfortunately, software of this kind doesn’t
exist. (Nothing of this kind exists.) The truth is that no matter what you want
to do, you can find software that does some of it, but not all of it.

This is one reason that object-oriented programming has been successful.
For years, companies were buying prewritten code only to discover that the
code didn’t do what they wanted it to do. So the companies began messing
with the code. Their programmers dug deep into the program files, changed
variable names, moved subprograms around, reworked formulas, and gener-
ally made the code worse. The reality was that if a program didn’t already
do what you wanted (even if it did something ever so close to it), you could
never improve the situation by mucking around inside the code. The best
option was to chuck the whole program (expensive as that was) and start
over. What a sad state of affairs!

Object-oriented programming has brought about a big change. An object-
oriented program is, at its heart, designed to be modified. Using correctly
written software, you can take advantage of features that are already built
in, add new features of your own, and override features that don’t suit your
needs. The best aspect of this situation is that the changes you make are
clean — no clawing and digging into other people’s brittle program code.
Instead, you make nice, orderly additions and modifications without touching
the existing code’s internal logic. It’s the ideal solution.

266 Part III: Working with the Big Picture: Object-Oriented Programming

The Last Word on Employees — Or Is It?
When you write an object-oriented program, you start by considering the
data. You’re writing about accounts. So what’s an account? You’re writing
code to handle button clicks. So what’s a button? You’re writing a program to
send payroll checks to employees. What’s an employee?

In this chapter’s first example, an employee is someone with a name and a
job title — sure, employees have other characteristics, but for now I stick to
the basics:

class Employee {
 String name;
 String jobTitle;
}

Of course, any company has different kinds of employees. For example,
your company may have full-time and part-time employees. Each full-time
employee has a yearly salary:

class FullTimeEmployee extends Employee {
 double salary;
}

In this example, the words extends Employee tell Java that the new class
(the FullTimeEmployee class) has all the properties that any Employee
has and, possibly, more. In other words, every FullTimeEmployee object
is an Employee object (an employee of a certain kind, perhaps). Like any
Employee, a FullTimeEmployee has a name and a jobTitle. But a
FullTimeEmployee also has a salary. That’s what the words extends
Employee do for you.

A part-time employee has no fixed yearly salary. Instead, every part-time
employee has an hourly pay rate and a certain number of hours worked in
a week:

class PartTimeEmployee extends Employee {
 double hourlyPay;
 int hoursWorked;
}

So far, a PartTimeEmployee has four characteristics: name, jobTitle,
hourlyPay, and number of hoursWorked.

267 Chapter 10: Saving Time and Money: Reusing Existing Code

Then you have to consider the big shots — the executives. Every executive is a
full-time employee. But in addition to earning a salary, every executive receives
a bonus (even if the company goes belly-up and needs to be bailed out):

class Executive extends FullTimeEmployee {
 double bonus;
}

Java’s extends keyword is cool because, by extending a class, you inherit all
the complicated code that’s already in the other class. The class you extend
can be a class that you have (or another developer has) already written. One
way or another, you’re able to reuse existing code and to add ingredients to
the existing code.

Here’s another example: The creators of Android wrote the Activity class,
with its 5,000 lines of code. You get to use all those lines of code for free by
simply typing extends Activity:

public class MainActivity extends Activity {

With the two words extends Activity, your new MainActivity class
can do all the things that a typical Android activity can do — start running,
find items in the app’s res directory, show a dialog box, respond to a low-
memory condition, start another activity, return an answer to an activity,
finish running, and much more.

Extending a class
So useful is Java’s extends keyword that developers have several different
names to describe this language feature:

	 ✓	Superclass/subclass: The Employee class (see the earlier section
“The Last Word on Employees — Or Is It?”) is the superclass of the
FullTimeEmployee class. The FullTimeEmployee class is a subclass
of the Employee class.

	 ✓	Parent/child: The Employee class is the parent of the FullTimeEmployee
class. The FullTimeEmployee class is a child of the Employee class.

		 In fact, the Executive class extends the FullTimeEmployee class,
which in turn extends the Employee class. So Executive is a descendent
of Employee, and Employee is an ancestor of Executive. The Unified
Modeling Language (UML) diagram in Figure 10-1 illustrates this point.

268 Part III: Working with the Big Picture: Object-Oriented Programming

	

Figure 10-1:
A class,

two child
classes, and
a grandchild

class.
	

	 ✓	Inheritance: The FullTimeEmployee class inherits the Employee class’s
members. (If any of the Employee class’s members were declared to be
private, the FullTimeEmployee class wouldn’t inherit those members.)

		 The Employee class has a name field, so the FullTimeEmployee class
has a name field, and the Executive class has a name field. In other
words, with the declarations of Employee, FullTimeEmployee, and
Executive at the start of this section, the code in Listing 10-1 is legal.

		 All descendants of the Employee class have name fields, even though a
name field is explicitly declared only in the Employee class itself.

Listing 10-1:   Using the Employee Class and Its Subclasses
public class Main {

 public static void main(String[] args) {
 Employee employee = new Employee();
 employee.name = “Sam”;

 FullTimeEmployee ftEmployee = new FullTimeEmployee();
 ftEmployee.name = “Jennie”;

 Executive executive = new Executive();
 executive.name = “Harriet”;
 }
}

269 Chapter 10: Saving Time and Money: Reusing Existing Code

Almost every Java class extends another Java class. I write almost because
one (and only one) class doesn’t extend any other class. Java’s built-in
Object class doesn’t extend anything. The Object class is at the top of
Java’s class hierarchy. Any class whose header has no extends clause auto-
matically extends Java’s Object class. So every other Java class is, directly
or indirectly, a descendent of the Object class, as shown in Figure 10-2.

The notion of extending a class is one pillar of object-oriented programming.
In the 1970s, computer scientists were noticing that programmers tended to
reinvent the wheel. If you needed code to balance an account, for example,
you started writing code from scratch to balance an account. Never mind
that other people had written their own account-balancing code. Integrating
other peoples’ code with yours, and adapting other peoples’ code to your
own needs, was a big headache. All things considered, it was easier to start
from scratch.

	

Figure 10-2:
Everything

comes
from Java’s
Object

class.
	

270 Part III: Working with the Big Picture: Object-Oriented Programming

Then, in the 1980s, object-oriented programming became popular. The
notion of classes and subclasses provided a clean way to connect existing
code (such as Android’s Activity class code) with new code (such as your
new MainActivity class code). By extending an existing class, you hook
into the class’s functionality, and you reuse features that have already been
programmed.

	 By reusing code, you avoid the work of reinventing the wheel. But you also
make life easier for the end user. When you extend Android’s Activity
class, your new activity behaves like other peoples’ activities because both
your activity and the other peoples’ activities inherit the same behavior from
Android’s Activity class. With so many apps behaving the same way, the
user learns familiar patterns. It’s a win-win situation.

Overriding methods
In this section, I expand on all the employee code snippets from the start of
this chapter. From these snippets, I can present a fully baked program exam-
ple. The example, as laid out in Listings 10-2 through 10-6, illustrates some
important ideas about classes and subclasses.

Listing 10-2:   What Is an Employee?
package org.allyourcode.company;

import javax.swing.JOptionPane;

public class Employee {
 String name;
 String jobTitle;

 public Employee() {
 }

 public Employee(String name, String jobTitle) {
 this.name = name;
 this.jobTitle = jobTitle;
 }

 public void showPay() {
 JOptionPane.showMessageDialog(null, name +
 “, Pay not known”);
 }
}

271 Chapter 10: Saving Time and Money: Reusing Existing Code

Listing 10-3:   Full-Time Employees Have Salaries
package org.allyourcode.company;

import java.text.NumberFormat;
import java.util.Locale;

import javax.swing.JOptionPane;

public class FullTimeEmployee extends Employee {
 double salary;

 static NumberFormat currency =
 NumberFormat.getCurrencyInstance(Locale.US);

 public FullTimeEmployee() {
 }

 public FullTimeEmployee(String name,
 String jobTitle,
 double salary) {
 this.name = name;
 this.jobTitle = jobTitle;
 this.salary = salary;
 }

 public double pay() {
 return salary;
 }

 @Override
 public void showPay() {
 JOptionPane.showMessageDialog(null, name + “, “ +
 currency.format(pay()));
 }
}

Listing 10-4:   Executives Get Bonuses
package org.allyourcode.company;

public class Executive extends FullTimeEmployee {
 double bonus;

 public Executive() {
 }

 public Executive(String name, String jobTitle,
 double salary, double bonus) {
 this.name = name;

(continued)

272 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 10‑4 (continued)
 this.jobTitle = jobTitle;
 this.salary = salary;
 this.bonus = bonus;
 }

 @Override
 public double pay() {
 return salary + bonus;
 }
}

Listing 10-5:   Part-Time Employees Are Paid by the Hour
package org.allyourcode.company;

import java.text.NumberFormat;
import java.util.Locale;

import javax.swing.JOptionPane;

public class PartTimeEmployee extends Employee {
 double hourlyPay;
 int hoursWorked;

 static NumberFormat currency =
 NumberFormat.getCurrencyInstance(Locale.US);

 public PartTimeEmployee() {
 }

 public PartTimeEmployee(String name,
 String jobTitle,
 double hourlyPay,
 int hoursWorked) {
 this.name = name;
 this.jobTitle = jobTitle;
 this.hourlyPay = hourlyPay;
 this.hoursWorked = hoursWorked;
 }

 public double pay() {
 return hourlyPay * hoursWorked;
 }

 @Override
 public void showPay() {
 JOptionPane.showMessageDialog(null, name + “, “ +
 currency.format(pay()));
 }
}

273 Chapter 10: Saving Time and Money: Reusing Existing Code

Listing 10-6:   Putting Your Employee Classes to the Test
package org.allyourcode.company;

public class Main {

 public static void main(String[] args) {
 Employee employee =
 new Employee(“Barry”, “Author”);

 FullTimeEmployee ftEmployee =
 new FullTimeEmployee(“Ed”, “Manager”, 10000.00);

 PartTimeEmployee ptEmployee =
 new PartTimeEmployee(“Joe”, “Intern”, 8.00, 20);

 Executive executive =
 new Executive(“Jane”, “CEO”, 20000.00, 5000.00);

 employee.showPay();
 ftEmployee.showPay();
 ptEmployee.showPay();
 executive.showPay();
 }

}

Figure 10-3 shows a run of the code in Listings 10-2 through 10-6, and Figure 10-4
contains a UML diagram for the classes in these listings. (In Figure 10-4, I ignore
the Main class from Listing 10-6. The Main class isn’t interesting, because it’s
not part of the Employee class hierarchy. The Main class is simply a subclass
of Java’s Object class.)

	 In Figure 10-4, I use strikethrough text and simulated handwriting to repre-
sent overridden methods. These typographical tricks are my own inventions.
Neither the strikethrough nor the simulated handwriting is part of the UML
standard. In fact, the UML standard has all kinds of rules that I ignore in this
book. My main purpose in showing you the rough UML diagrams is to help
you visualize the hierarchies of classes and their subclasses.

Consider the role of the showPay method in Figure 10-4 and in Listings 10-2
through 10-6. In the figure, showPay appears in all except the Executive
class; in the listings, I define showPay in all except the Executive class.

The showPay method appears for the first time in the Employee class (refer to
Listing 10-2), where it serves as a placeholder for not knowing the employee’s
pay. The FullTimeEmployee class (refer to Listing 10-3) would inherit this
vacuous showPay class except that the FullTimeEmployee class declares
its own version of showPay. In the terminology from Chapter 5, the showPay
method in FullTimeEmployee overrides the showPay method in Employee.

274 Part III: Working with the Big Picture: Object-Oriented Programming

	

Figure 10-3:
Running
the code

in Listings
10-2 through

10-6.
	

	

Figure 10-4:
Classes

and sub-
classes with

fields and
methods.

	

275 Chapter 10: Saving Time and Money: Reusing Existing Code

Listing 10-6 contains a call to a full-time employee’s showPay method:

FullTimeEmployee ftEmployee = ... Etc.
ftEmployee.showPay();

And in Figure 10-3, the call to ftEmployee.showPay() gives you the
FullTimeEmployee class’s version of showPay, not the Employee class’s
clueless version of showPay. (If ftEmployee.showPay() called the
Employee class’s version of showPay, you’d see Ed, Pay not known in
Figure 10-3.) Overriding a method declaration means taking precedence over
that existing version of the method.

Of course, overriding a method isn’t the same as obliterating a method. In
Listing 10-6, the snippet

Employee employee = ... Etc.
employee.showPay();

conjures up the Employee class’s noncommittal version of showPay. It
happens because an object declared with the Employee constructor has
no salary field, no hourlyPay field, and no showPay method other than
the method declared in the Employee class. The Employee class, and any
objects declared using the Employee constructor, could do their work even
if the other classes (FullTimeEmployee, PartTimeEmployee, and so on)
didn’t exist.

	 The only way to override a method is to declare a method with the same
name and the same parameters inside a subclass. By same parameters, I
mean the same number of parameters, each with the same type. For example,
calculate(int count, double amount) overrides calculate(int
x, double y) because both declarations have two parameters: The first
parameter in each declaration is of type int, and the second parameter in
each declaration is of type double. But calculate(int count, String
amount) doesn’t override calculate(int count, double amount). In
one declaration, the second parameter has type double, and in the other dec-
laration, the second parameter has type String. If you call calculate(42,
2.71828), you get the calculate(int x, double y) method, and if
you call calculate(42, “Euler”) you get the calculate(int count,
String amount) method.

Listings 10-2 through 10-5 have other examples of overriding methods. For
example, the Executive class in Listing 10-4 overrides its parent class’s pay
method, but not the parent class’s showPay method. Calculating an execu-
tive’s pay is different from calculating an ordinary full-time employee’s pay.
But after you know the two peoples’ pay amounts, showing an executive’s
pay is no different from showing an ordinary full-time employee’s pay.

276 Part III: Working with the Big Picture: Object-Oriented Programming

	 When I created this section’s examples, I considered giving the Employee class
a pay method (returning 0 on each call). This strategy would make it unneces-
sary for me to create identical showPay methods for the FullTimeEmployee
and PartTimeEmployee classes. For various reasons, (none of them interest-
ing), I decided against doing it that way.

Overriding works well in situations in which you want to tweak an existing
class’s features. Imagine having a news ticker that does everything you want
except scroll sideways. (I’m staring at one on my computer right now! As
one news item disappears toward the top, the next news item scrolls in from
below. The program’s options don’t allow me to change this setting.) After
studying the code’s documentation, you can subclass the program’s Ticker
class and override the Ticker class’s scroll method. In your new scroll
method, the user has the option to move text upward, downward, sideways,
or inside out (whatever that means).

Java annotations
In Java, elements that start with an at-sign (@) are annotations. Java didn’t
have annotations until Java 5.0, so if you try to use the @Override annota-
tion with Java 1.4.2, for example, you’ll see some nasty-looking error mes-
sages. That’s okay because Android requires Java 5.0 or Java 6. You can’t use
earlier versions of Java to create Android apps.

In Listings 10-3, 10-4, and 10-5, each @Override annotation reminds Java
that the method immediately below the annotation has the same name and
the same parameter types as a method in the parent class. The use of the @
Override annotation is optional. If you remove all @Override lines from
Listings 10-3, 10-4, and 10-5, the code works the same way.

So why use the @Override annotation? Imagine leaving it off and mistakenly
putting the following method in Listing 10-4:

public void showPay(double salary) {
 JOptionPane.showMessageDialog(null, name + “, “ +
 currency.format(salary));
}

You might think that you’ve overridden the parent class’s showPay method,
but you haven’t! The Employee class’s showPay method has no parameters,
and your new FullTimeEmployee class’s showPay method has a parame-
ter. Eclipse looks at this stuff in the editor and says, “Okay, I guess the devel-
oper is inheriting the Employee class’s showPay method and declaring an
additional version of showPay. Both showPay methods are available in the

277 Chapter 10: Saving Time and Money: Reusing Existing Code

FullTimeEmployee class.” (By the way, when Eclipse speaks, you can’t see
my lips moving.)

Everything goes fine until you run the code and see the message Pay
not known when you call ftEmployee.showPay(). The Java virtual
machine is calling the parameterless version of showPay, which the
FullTimeEmployee class inherits from its parent.

The problem in this hypothetical example isn’t so much that you commit
a coding error — everybody makes mistakes like this one. (Yes, even I do.
I make lots of them.) The problem is that, without an @Override annota-
tion, you don’t catch the error until you’re running the program. That is, you
don’t see the error message as soon as you compose the code in the Eclipse
editor. Waiting until runtime can be as painless as saying, “Aha! I know why
this program didn’t run correctly.” But waiting until runtime can also be quite
painful — as painful as saying, “My app was rated 1 on a scale of 5 because of
this error that I didn’t see until a user called my bad showPay method.”

Ideally, Eclipse is aware of your intention to override an existing method,
and it can complain to you while you’re staring at the editor. If you use the @
Override annotation in conjunction with the bad showPay method, you see
the blotches shown in Figure 10-5. That’s good because you can fix the prob-
lem long before the problem shows up in a run of your code.

	

Figure 10-5:
The show-
Pay method

doesn’t
override
the par-

ent class’s
showPay

method.
	

More about Java’s Modifiers
I start the conversation about Java’s modifiers in Chapters 6 and 9. Chapter 6
describes the keyword final as it applies to variables, and Chapter 9 deals
with the keywords public and private. In this section, I add a few more
fun facts about Java modifiers.

278 Part III: Working with the Big Picture: Object-Oriented Programming

The word final has many uses in Java programs. In addition to having final
variables, you can have these elements:

	 ✓	Final class: If you declare a class to be final, no one (not even you)
can extend it.

	 ✓	Final method: If you declare a method to be final, no one (not even
you) can override it.

Figures 10-6 and 10-7 put these rules into perspective. In Figure 10-6, I can’t
extend the Stuff class, because the Stuff class is final. And in Figure 10-7,
I can’t override the Stuff class’s increment method because that increment
method is final.

	

Figure 10-6:
Trying to
extend a

final class.
	

	

Figure 10-7:
Trying to
override

a final
method.

	

279 Chapter 10: Saving Time and Money: Reusing Existing Code

You can apply Java’s protected keyword to a class’s members. This
protected keyword has always seemed a bit strange to me. In common
English usage, when my possessions are “protected,” my possessions aren’t
as available as they’d normally be. But in Java, when you preface a field or a
method with the protected keyword, you make that field or method a bit
more available than it would be by default, as shown in Figure 10-8.

	

Figure 10-8:
Access

modes for
fields and
methods.

	

Here’s what I say in Chapter 9 about members with default access:

A default member of a class (a member whose declaration doesn’t contain
the words public, private, or protected) can be used by any code
inside the same package as that class.

The same thing is true about a protected class member. But in addition, a
protected member is inherited outside the class’s package by any subclass
of the class containing that protected member.

Huh? What does that last sentence mean, about protected members? To
make things concrete, Figure 10-9 shows you the carefree existence in which
two classes are in the same package. With both Stuff and MyStuff in the
same package, the MyStuff class inherits the Stuff class’s default value
variable and the Stuff class’s default increment method.

If you move the Stuff class to a different package, MyStuff no longer inher-
its the Stuff class’s default value variable or the Stuff class’s default
increment method, as shown in Figure 10-10.

But if you turn value into a protected variable and you turn increment
into a protected method, the MyStuff class again inherits its parent class’s
value variable and increment method, as shown in Figure 10-11.

280 Part III: Working with the Big Picture: Object-Oriented Programming

	

Figure 10-9:
Two classes
in the same

package.
	

	

Figure 10-10:
Classes in

different
packages.

	

281 Chapter 10: Saving Time and Money: Reusing Existing Code

	

Figure 10-11:
Using the
protected
modifier.

	

Notice one more detail in Figure 10-11. I change the MyStuff class’s
increment method from default to public. I do this to avoid seeing an
interesting little error message. You can’t override a method with another
method whose access is more restrictive than the original method. In other
words, you can’t override a public method with a private method. You can’t
even override a public method with a default method.

Java’s default access is more restrictive than protected access (see
Figure 10-8). So you can’t override a protected method with a default
method. In Figure 10-11, I avoid the whole issue by making public the
MyStuff class’s increment method. That way, I override the increment
method with the least restrictive kind of access.

Keeping Things Simple
Most computer programs operate entirely in the virtual realm. They have
no bricks, nails, or girders. So you can type a fairly complicated computer
program in minutes. Even with no muscle and no heavy equipment, you can
create a structure whose complexity rivals that of many complicated physi-
cal structures. You, the developer, have the power to build intricate, virtual
bridges.

282 Part III: Working with the Big Picture: Object-Oriented Programming

One goal of computer programming is to manage complexity. A good app
isn’t simply useful or visually appealing — a good app’s code is nicely orga-
nized, easy to understand, and easy to modify.

Certain programming languages, like C++, support multiple inheritance, in
which a class can have more than one parent class. For example, in C++ you
can create a Book class, a TeachingMaterial class, and a Textbook class.
You can make Textbook extend both Book and TeachingMaterial. This
feature makes class hierarchies quite flexible, but it also makes those same
hierarchies extremely complicated. You need tricky rules to decide how
to inherit the move methods of both the computer’s Mouse class and the
rodent’s Mouse class.

To avoid all this complexity, Java doesn’t support multiple inheritance.
In Java, each class has one (and only one) superclass. A class can have
any number of subclasses. You can (and will) create many subclasses of
Android’s Activity class. And other developers create their own sub-
classes of Android’s Activity class. But classes don’t have multiple person-
alities. A Java class can have only one parent. The Executive class (refer
to Listing 10-4) cannot extend both the FullTimeEmployee class and the
PartTimeEmployee class.

Using an interface
The relationship between a class and its subclass is one of inheritance. In
many real-life families, a child inherits assets from a parent. That’s the way
it works.

But consider the relationship between an editor and an author. The editor
says, “By signing this contract, you agree to submit a completed manuscript
by the fifteenth of July.” Despite any excuses that the author gives before the
deadline date (and, believe me, authors make plenty of excuses), the rela-
tionship between the editor and the author is one of obligation. The author
agrees to take on certain responsibilities; and, in order to continue being an
author, the author must fulfill those responsibilities. (By the way, there’s no
subtext in this paragraph — none at all.)

Now consider Barry Burd. Who? Barry Burd — that guy who writes Java
Programming For Android Developers For Dummies and certain other For
Dummies books (all from Wiley Publishing). He’s a parent, and he’s also an
author. You want to mirror this situation in a Java program, but Java doesn’t
support multiple inheritance. You can’t make Barry extend both a Father
class and an Author class at the same time.

283 Chapter 10: Saving Time and Money: Reusing Existing Code

Fortunately for Barry, Java has interfaces. A class can extend only one parent
class, but a class can implement many interfaces. A parent class is a bunch
of stuff that a class inherits. On the other hand, as with the relationship
between an editor and an author, an interface is a bunch of stuff that a class
is obliged to provide.

Here’s another example. Listings 10-2 through 10-5 describe what it means to
be an employee of various kinds. Though a company might hire consultants,
consultants who work for the company aren’t employees. Consultants are
normally self-employed. They show up temporarily to help companies solve
problems and then leave the companies to work elsewhere. In the United
States, differentiating between an employee and a consultant is important:
So serious are the U.S. tax withholding laws that labeling a consultant an
“employee” of any kind would subject the company to considerable legal risk.

To include consultants with employees in your code, you need a
Consultant class that’s separate from your existing Employee class hierar-
chy. On the other hand, consultants have a lot in common with a company’s
regular employees. For example, every consultant has a showPay method.
You want to represent this commonality in your code, so you create an inter-
face. The interface obligates a class to give meaning to the method name
showPay, as shown in Listing 10-7.

Listing 10-7:   Behold! An Interface!
package org.allyourcode.company;

public interface Payable {

 public void showPay();

}

The element in Listing 10-7 isn’t a class — it’s a Java interface. Here’s a
description of the listing’s code:

As an interface, I have a header, but no body, for the showPay method.
In this interface, the showPay method takes no arguments and returns
void. A class that claims to implement me (the Payable interface) must
provide (either directly or indirectly) a body for the showPay method.
That is, a class that claims to implement Payable must, in one way or
another, implement the showPay method.

	 To find out about the difference between a method declaration’s header and
its body, see Chapter 5.

284 Part III: Working with the Big Picture: Object-Oriented Programming

Listings 10-8 and 10-9 implement the Payable interface and provide bodies
for the showPay method.

Listing 10-8:   Implementing an Interface
package org.allyourcode.company;

import java.text.NumberFormat;
import java.util.Locale;

import javax.swing.JOptionPane;

public class Consultant implements Payable {

 String name;
 double hourlyFee;
 int hoursWorked;

 static NumberFormat currency =
 NumberFormat.getCurrencyInstance(Locale.US);

 public Consultant() {
 }

 public Consultant(String name, String jobTitle,
 double hourlyFee, int hoursWorked) {
 this.name = name;
 this.hourlyFee = hourlyFee;
 this.hoursWorked = hoursWorked;
 }

 public double pay() {
 return hourlyFee * hoursWorked;
 }

 @Override
 public void showPay() {
 JOptionPane.showMessageDialog(null, name + “, “ +

currency.format(pay()));
 }
}

Listing 10-9:   Another Class Implements the Interface
package org.allyourcode.company;

import javax.swing.JOptionPane;

public class Employee implements Payable {

285 Chapter 10: Saving Time and Money: Reusing Existing Code

 String name;
 String jobTitle;

 public Employee() {
 }

 public Employee(String name, String jobTitle) {
 this.name = name;
 this.jobTitle = jobTitle;
 }

 @Override
 public void showPay() {
 JOptionPane.showMessageDialog(null, name +
 “, Pay not known”);
 }
}

In Listings 10-8 and 10-9, both the Consultant and Employee classes imple-
ment the Payable interface — the interface that summarizes what it means
to be paid by the company. Implementing this interface guarantees that these
classes have bodies for the showPay method. This guarantee allows any other
code to safely call employee.showPay() or consultant.showPay().

In this section’s example, two otherwise unrelated classes (Employee and
Consultant) both implement the Payable interface. When I picture a Java
interface, it’s an element that cuts across levels of Java’s class/subclass hier-
archy, as shown in Figure 10-12.

	

Figure 10-12:
An interface
cuts across

the class
hierarchy.

	

	 The dotted line in Figure 10-12 isn’t part of standard UML. The folks who
manage the standard have much better ways to represent interfaces than I use
in this chapter’s figures.

286 Part III: Working with the Big Picture: Object-Oriented Programming

Creating a callback
In this chapter’s (just discussed) “Using an interface” section, I reveal how
an interface helps me realize the commonalities among various pay-receiving
classes. The interface gives me an elegant way to mirror the connections in
the real-world’s data. But aside from its elegance, the interface in the “Using
an interface” section doesn’t make any problems easier to solve. The code
with and without the interface is basically the same.

So in this section, I describe another problem that I solve using an interface.
(In fact, the use of an interface plays a key role in the problem’s solution.)
This section’s code is a bit more complicated than the code in the “Using an
interface” section, but this section’s code illustrates a widely used program-
ming technique.

Many scenarios in application development involve callbacks. Imagine a stop-
watch program. The program tells you when ten seconds have gone by. It has
two statements: one to start a countdown and another to notify the user that
the time is up. You can write the code this way:

try {
 Thread.sleep(10000);
} catch (InterruptedException e) {
 e.printStackTrace();
}
JOptionPane.showMessageDialog(null, “Time’s up!”);

Java’s built-in Thread class has a sleep method that makes your app’s
action pause for any number of milliseconds you want. Ten thousand milli-
seconds is the same as ten seconds.

	 The try/catch business surrounding the sleep method call is part of the
Java exception-handling feature. I cover it in Chapter 13.

Your code looks sensible, but it’s seriously flawed. While your program puts
itself to sleep for ten seconds, the user doesn’t get a response from it — its
buttons are frozen. Your program is sleeping, so the user can’t use any other
feature that your program offers. The user touches your program’s widgets
and presses your program’s Cancel button, but the program doesn’t respond.
Yes, this is a great way to guarantee a 1-of-5 rating at Google Play (its app
store).

To fix the problem, you take advantage of somebody’s TimerCommon class,
a general-purpose class that sleeps for a certain period on behalf of your

287 Chapter 10: Saving Time and Money: Reusing Existing Code

program. While the TimerCommon object sleeps, your program can remain
awake, responding to the user’s clicks, taps, inputs, swipes, or whatever.

(By the way, the TimerCommon class isn’t part of the Java API. Somebody
posted the TimerCommon class on the web along with a note permitting any
developer to use the code.)

When the TimerCommon object wakes up, the object calls one of your pro-
gram’s methods. (In this section’s example, your method is named alert.)
Until the TimerCommon object calls your alert method, the method sits qui-
etly in your program, doing nothing. Rather than execute the alert method,
your program responds to the user’s requests. Slick!

Now review the general flow of execution in the stopwatch code: First you set
the TimerCommon object in motion. The TimerCommon object takes a brief
nap. Finally, when the TimerCommon object wakes up, the TimerCommon
object calls you back. In other words, the TimerCommon object issues a call-
back, as shown in Figure 10-13.

	

Figure 10-13:
The Timer

Common
object calls

you back.
	

Listings 10-10 through 10-13 have the basic code to illustrate the callback
technique.

288 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 10-10:   Implementing the Alertable Interface
package org.allyourcode.stopwatch;

import java.util.Calendar;

import javax.swing.JOptionPane;

import com.example.timers.Alertable;
import com.example.timers.TimerCommon;

public class StopWatch implements Alertable {

 public StopWatch(int seconds) {
 Calendar wakeTime = Calendar.getInstance();
 wakeTime.add(Calendar.SECOND, seconds);
 new TimerCommon(this, “Stop”, wakeTime);
 }

 @Override
 public void alert(String message) {
 JOptionPane.showMessageDialog(null, message);
 }
}

Listing 10-11:   The Alertable Interface
package com.example.timers;

public interface Alertable {

 public void alert(String message);
}

Listing 10-12:   Receiving an Alertable Parameter Value
package com.example.timers;

import java.util.Calendar;

public class TimerCommon {

 public TimerCommon(Alertable alertable,
 String message,
 Calendar wakeTime) {

 long whenMillis = wakeTime.getTimeInMillis();

289 Chapter 10: Saving Time and Money: Reusing Existing Code

 long currentMillis = System.currentTimeMillis();

 try {
 Thread.sleep(whenMillis - currentMillis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 alertable.alert(message);
 }
}

Listing 10-13:   Everything Has to Start Somewhere!
package org.allyourcode.stopwatch;

public class Main {

 public static void main(String[] args) {
 new StopWatch(10);
 }
}

When you run the code in Listings 10-10 through 10-13, you experience a ten-
second delay. Then you see the dialog box shown in Figure 10-14.

	

Figure 10-14:
Running
the code

in Listings
10-10

through
10-13.

	

	 At the start of this section, I complain that without TimerCommon, your
stopwatch code isn’t responsive to new user input. Well, I must confess that
the code in Listings 10-10 through 10-13 doesn’t solve the responsiveness
problem. To make the program more responsive, you use the interface tricks
in Listings 10-10 through 10-13, and, in addition, you put TimerCommon in a
thread of its own. The trouble is that the separate thread business doesn’t
help you understand how interfaces work, so I don’t bother creating an extra
thread in this section’s example. For a more honest multi-threading example,
see Chapter 13.

290 Part III: Working with the Big Picture: Object-Oriented Programming

One program; two Eclipse projects
To emphasize my point about the StopWatch
and TimerCommon classes being devel-
oped independently, I’ve spread Listings 10-10
through 10-13 over two different Eclipse proj-
ects. The StopWatch and Main classes
star in the 10-10 project, and Alertable and
TimerCommon star in the 10-11 project. To
make this multiproject code work, you have to
tell Eclipse about one project’s dependency on
the other. Here’s how:

	 1.	 Right-click (in Windows) or Control-click
(on a Mac) the 10-10 project’s branch in the
Package Explorer in Eclipse.

		 You do this because, in this section’s
example, the code in the 10-10 project

makes use of the code in the 10-11 project.
(The StopWatch class creates a new
TimerCommon instance.)

	 2.	 From the contextual menu that appears,
choose Properties.

		 The dialog box labeled Properties for 10-10
opens. On the left side, you see a list of
categories.

	 3.	 In the list of categories, click to select the
Project References item.

	 4.	 In the main body of the dialog box, select
the check box labeled 10-11, as shown in
the first sidebar figure.

		 Remember that the 10-10 project uses the
constructor that’s declared in the 10-11
project.

	 5.	 In the list of categories, select the Java
Build Path item.

	 6.	 In the main body of the Properties for 10-10
dialog box, select the Projects tab, as
shown in the second sidebar figure.

291 Chapter 10: Saving Time and Money: Reusing Existing Code

	 7.	 On the right side of the Projects tab, click
the Add button.

		 The Required Project Selection dialog box
opens.

	 8.	 In the Required Project Selection dialog
box, select the 10-11 option to place a
check mark next to it.

		 Remember (again) that the 10-10 project
uses the constructor that’s declared in the
10-11 project.

	 9.	 Click OK to dismiss the Required Project
Selection dialog box.

		 As a result, the Properties for 10-10 dialog
box looks like the one shown in the second
sidebar figure.

	10.	 Click OK to save your changes and to dis-
miss the Properties for 10-10 dialog box.

		 Now Eclipse knows that Project 10-10
depends on some code from 10-11.

A brief explanation of this section’s code
In Listing 10-10, your code calls new TimerCommon(this, “Stop”,
when). Here’s the equivalent command, translated into English:

Create a new TimerCommon object; tell it to call this code back at
the moment that I’ve named when. Have the new TimerCommon object
deliver a “Stop” message back to this code.

A detailed explanation of this section’s code
The constructor call in Listing 10-13 creates a StopWatch instance. To
understand how Listings 10-10 through 10-12 work, you have to trace the
progress of that StopWatch instance throughout the run of the program
(you can follow along in Figure 10-13):

292 Part III: Working with the Big Picture: Object-Oriented Programming

	 ✓	In Listing 10-10, Java’s this keyword represents the StopWatch
instance.

		 The word this appears inside a TimerCommon constructor. So the next
bunch of code to be executed is the code inside the TimerCommon con-
structor’s body.

	 ✓	In the TimerCommon constructor’s body (refer to Listing 10-12),
the alertable parameter becomes synonymous with the original
StopWatch instance.

		 The TimerCommon instance “sleeps” for a while.

	 ✓	Finally, with alertable referring to the StopWatch instance,
Listing 10-12 calls alertable.alert(message).

 		 In other words, Listing 10-12 calls back the original StopWatch instance.
Listing 10-12 knows how to call the original StopWatch instance,
because the StopWatch instance passed itself (the keyword this) in
the TimerCommon construction call.

How do interfaces help with all this? Remember that the TimerCommon
class isn’t your own code. Someone else wrote the TimerCommon class and
placed it in a separate com.example.timers package. Whoever wrote the
TimerCommon class knew nothing about you or your StopWatch class (the
code in Listing 10-10). In particular, the TimerCommon class doesn’t contain
the following code:

public TimerCommon(StopWatch yourStopWatch,
 String message,
 Calendar wakeTime) {

yourStopWatch.alert(message);

Instead, the TimerCommon class is written for a more general audience. The
TimerCommon class contains the following lines:

public TimerCommon(Alertable alertable,
 String message,
 Calendar wakeTime) {

alertable.alert(message);

The class’s constructor expects its first argument to implement the Alertable
interface. And sure enough, the first argument in new TimerCommon(this,
“Stop”, when) in Listing 10-10 is this, which is your StopWatch instance,
which (Oh, joy!) implements Alertable. Here’s the best part: As long as your
class implements the Alertable interface, your class is guaranteed to have
an alert method with one String argument (refer to Listing 10-11). So the
TimerCommon class can safely call your code’s alert method.

293 Chapter 10: Saving Time and Money: Reusing Existing Code

How versatile is this interface?
The previous section shows what an interface can do. There, an interface
bridges the gap between two otherwise unrelated pieces of code. To belabor
this point even further (if that’s possible), consider a new app of mine — a
reminder app.

Here I sit, halfway around the world from where you created your stopwatch
program. I know all about the TimerCommon class, but I know nothing about
your stopwatch app. (Okay, maybe in real life, you live 20 miles from me
in New Jersey, and I know about your stopwatch app because I wrote it for
this chapter and the app isn’t really yours. Who cares?) Here I am, halfway
around the world, knowing nothing about your stopwatch app, using the
TimerCommon class to create a completely different program — a reminder
program. The code is in Listings 10-14 through 10-16.

Listing 10-14:   What Is an Appointment?
package com.allmycode.reminder;

import java.util.Calendar;

public class Appointment {
 String name;

(continued)

Time doesn’t pass
Java’s Calendar class has a misleading
name: An instance of the Calendar class is a
moment in time, not an entire month or year full
of times. In Listing 10-10, the line
wakeTime = Calendar.

getInstance()

makes wakeTime refer to a particular
moment. In fact, when you call the parameter-
less Calendar.getInstance(), you get
the current moment (the precise millisecond in
which the method call is executed). You can
check that moment’s fields (the YEAR, MONTH,
DAY_OF_MONTH, HOUR, MINUTE, SECOND
and MILLISECOND fields). But you can also

see the moment as a number of milliseconds
since midnight on January 1, 1970.

A Calendar object’s getTimeIn
Millis method finds the exact number of mil-
liseconds since January 1, 1970 for that object.
(Nowadays, it’s a huge number.) The call
add(Calendar.SECOND, seconds)
adds a certain number of seconds to a par-
ticular Calendar moment. And the System
class’s static currentTimeMillis method
provides a one-step way to find out how many
milliseconds have passed since that landmark
date in 1970.

294 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 10‑14 (continued)
 Calendar when;

 public Appointment(String name, Calendar when) {
 this.name = name;
 this.when = when;
 }
}

Listing 10-15:   A Reminder Is an Appointment That’s Alertable
package com.allmycode.reminder;

import java.awt.Toolkit;
import java.util.Calendar;

import javax.swing.JOptionPane;

import com.example.timers.Alertable;
import com.example.timers.TimerCommon;

public class Reminder extends Appointment
 implements Alertable {

 public Reminder(String name, Calendar when) {
 super(name, when);
 new TimerCommon(this, name, when);
 }

 @Override
 public void alert(String message) {
 Toolkit.getDefaultToolkit().beep();
 JOptionPane.showMessageDialog(null, message,
 “Reminder!”, JOptionPane.WARNING_MESSAGE);
 }
}

Listing 10-16:   Creating a Reminder
package com.allmycode.reminder;

import java.util.Calendar;

public class Main {

 public static void main(String[] args) {
 Calendar when = Calendar.getInstance();
 when.add(Calendar.SECOND, 5);
 new Reminder(“Take a break!”, when);
 }
}

295 Chapter 10: Saving Time and Money: Reusing Existing Code

	 The call to beep() in Listing 10-15 makes some sort of noise (no big surprise).
But you might want to know a bit about the details. Java has a Toolkit class
with a static getDefaultToolkit method. A call to Toolkit.getDefault
Toolkit() returns a connection to the user’s operating system. This connec-
tion (an instance of the Toolkit class) has its own beep method. There! Now
you know.

As in your case, my class implements the Alertable interface and has an
alert(String message) method. In Listing 10-15, my Reminder object
passes itself (this) to a new TimerCommon object. Because the TimerObject
class’s code expects the first constructor parameter to be Alertable, every-
thing is okay. The TimerCommon object sleeps until it’s time to remind the
user. At the appropriate time, the TimerCommon object calls my object’s
alert method — again, the use of an interface adds versatility to the code by
cutting across class/subclass lines, as shown in Figure 10-15.

	

Figure 10-15:
Cutting

across class
lines.

	

Java’s super keyword
Here’s an excerpt from Listing 10-15:

public class Reminder extends Appointment
 implements Alertable {

 public Reminder(String name, Calendar when) {
 super(name, when);
 new TimerCommon(this, name, when);
 }

296 Part III: Working with the Big Picture: Object-Oriented Programming

In Listing 10-15, the word super stands for the superclass’s constructor. In par-
ticular, the call super(name, when) tells Java to find the superclass of the
current class, to call that superclass’s constructor, and to feed the parameter
values name and when to the superclass constructor.

My Reminder class extends the Appointment class (refer to Listing 10-14). So
in Listing 10-15, the call super(name, when) invokes one of the Appointment
class’s constructors.

Of course, the Appointment class had better have a constructor whose
types match the super call’s parameter types (String for name and
Calendar for when). Otherwise, the Eclipse editor displays lots of red
marks. Fortunately, the Appointment class in Listing 10-14 has the appropri-
ate two-parameter constructor.

public Appointment(String name, Calendar when) {
 this.name = name;
 this.when = when;
}

What Does This Have
to Do with Android?

Employees and consultants make good examples of classes and subclasses.
But at this point in the book, you might be interested in a more practical
programming example. How about an Android app? The first example is rue-
fully simple, but it’s one that an Android programmer sees every day. It’s an
Android Activity.

A typical Android app displays one screen at a time, as shown in Figure 10-16.
A screenful of material might present the user with a list of options and a
Start button. The next screenful (after the user clicks Start, for example)
shows some helpful information, such as a map, a video, or a list of items
for sale. When the user touches on this information screen, the app’s dis-
play changes to reveal a third screen, showing detailed information about
whatever option the user selected. Eventually, the user dismisses the detail
screen by clicking the Back button.

In Android terminology, each screenful of material is an activity. As the
user progresses through the sequence of screens displayed in Figure 10-16,
Android displays three activities. (It displays the middle activity twice —
once after the user clicks Start and a second time after the user dismisses the
detailed-info activity.)

297 Chapter 10: Saving Time and Money: Reusing Existing Code

	

Figure 10-16:
Android

displays a
sequence of

screens.
	

Android developers deal with activities all the time, so the creators of Android
have created an Activity class. The Activity class is part of Android’s
Application Programming Interface (API), the enormous library of classes
that’s available to every Android developer. You download the Android API
when you follow the instructions in Chapter 2.

In Chapter 4, you create a brand-new Android app. Eclipse creates some skel-
etal code (enough to run a simple “Hello” program). I’ve copied this skeletal
code in Listing 10-17.

Listing 10-17:   Eclipse Creates a Main Activity
package com.allmycode.myfirstandroidapp;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

}

298 Part III: Working with the Big Picture: Object-Oriented Programming

The following list can help you relate elements from Listing 10-17 to this
chapter’s discussion of classes, subclasses, and interfaces:

	 ✓	Every Android app is in a package of its own.

		 The app in Listing 10-17 belongs to the package named com.allmy
code.myfirstandroidapp.

	 ✓	If the first part of a package name is android, that package probably
belongs to Google’s Android operating system code.

		 For example, Android’s Activity class lives in the android.app
package. When I import android.app.Activity, I can refer to the
Activity class in the rest of Listing 10-17 without repeating the class’s
fully qualified name.

		 Java has no rule to enforce package naming conventions. You can create
your own package and name it android.app, and you can use that
package in code that has nothing to do with Google Android. But a good
developer never looks for trouble. If convention dictates that the word
android signals a package in the official Android API, don’t use the
word android in your own package names.

	 ✓	The MainActivity class extends the android.app.Activity class.

		 A MainActivity is an Activity. Therefore, the MainActivity in
Listing 10-17 has all the rights and responsibilities that any Activity
instance has. For example, the MainActivity has onCreate and
onCreateOptionsMenu methods, which it overrides in Listing 10-17.

		 In fact, the MainActivity class inherits about 5,000 lines of Java code
from Android’s Activity class. The inherited methods include ones
such as getCallingActivity, getCallingPackage, getParent,
getTitle, getTitleColor, getWindow, onBackPressed, onKey
Down, onKeyLongPress, onLowMemory, onMenuItemSelected,
setTitle, setTitleColor, startActivity, finish, and many,
many others. You inherit all this functionality by typing two simple
words: extends Activity.

		 The Android Activity class extends another class: Android’s own
ContextThemeWrapper. Without knowing what a ContextTheme
Wrapper is (and without caring), your app’s own MainActivity class
(refer to Listing 10-17) extends Android’s Activity class, which in turn
extends Android’s ContextThemeWrapper class. So in the terminology
of familial relationships, your MainActivity class is a descendant of
Android’s ContextThemeWrapper. Your MainActivity class is a kind
of ContextThemeWrapper.

299 Chapter 10: Saving Time and Money: Reusing Existing Code

	 ✓	On creating an activity, you find out what was going on when the
activity was last destroyed.

		 The parameter savedInstanceState stores information about what
was going on when the activity was last destroyed. If the savedInstance
State contains any meaningful information, it’s because the activity
was destroyed in the middle of a run. Maybe the user tilted the device
sideways, causing the activity to be destroyed and then re-created in
Landscape mode. (See Chapter 5.)

		 In Listing 10-17, you feed the information in the savedInstanceState
parameter to the code’s superclass, which is Android’s Activity class.
In turn, the Activity class’s constructor does all kinds of useful things
with savedInstanceState. Among other things, the Activity class’s
constructor restores much of your activity to the state it was in when
your activity was last destroyed.

	 ✓	The MainActivity class inherits a setContentView method from
the Activity class.

		 A call to the setContentView method’s parameter is a code number
(as described in a sidebar in Chapter 4). The setContentView method
looks up that code number and finds an XML file in your project’s res\
layout directory. (In this example, the filename is activity_main.
xml.) The method then inflates the XML file: That is, the method inter-
prets the XML file’s text as the description of a nice-looking arrangement
of items on the user’s screen. This arrangement becomes the overall
look of your activity’s screen.

	 ✓	The MainActivity class overrides the Activity class’s onCreate
OptionsMenu method.

		 At some point during the display of MainActivity on the screen,
Android creates the activity’s Options menu. (Normally, the user opens
the Options menu by touching an icon containing a few dots or dashes.)
In Listing 10-17, the call to inflate once again turns the text from an
XML file (res\menu\main.xml) into a bunch of menu items and menu
actions.

		 The onCreateOptionsMenu method returns true, which means, “Yes,
I’ve done all that I have to do in setting up the activity’s Options menu.”
(A false value would indicate that other code must do the follow-up
work to help set up the Options menu.)

So much for Eclipse’s autogenerated app. In the next few chapters, I intro-
duce more Java features, and I show you how to build more functionality on
top of the autogenerated Android app.

300 Part III: Working with the Big Picture: Object-Oriented Programming

